

Presenter: Charles Van Steenwyk Visiting Research Student Cal Poly, San Luis Obispo

Table of Contents

- 1. Introduction
- 2. Langmuir Probe Considerations
- 3. Goals
- 4. Deployment Mechanism
- 5. Potential Options
- 6. Current Design
- 7. Analysis
- 8. Results So Far
- 9. Next Steps

Intro - Langmuir Probes

- Conducting element inserted into plasma
- Probe biased with respect to ground (of spacecraft)
- Bias varied to collect different data

Image credit: David Pace

Double Langmuir Probes

- Uses two probes to avoid charging issues
- One probe set relative to the other probe
- Spacecraft state of charge does not affect results

Image credit: M.Y. Naz

10/30/2019

Project Goal

Goals:

- Design and simulate a deployer arm for a DLP for BIRDS-V
- Ensure that the deployer meets all requirements for launch, volume, and science

Deliverables:

- CAD model of deployer assembly
- 3-Views of deployer assembly
- Simulation results
- (If time permits) prototype model

Environment considerations

- In order to avoid interference from the spacecraft, the probe must sit outside the CubeSat's wake.
- This value is around 10cm

Density: 1E+12 2E+12 3E+12 4E+12 5E+12 6E+12

Image credit: H.M. Elhaj/KyuTech

Probe must <u>deploy</u> at least 10cm outside spacecraft

Baselined Langmuir Probe

- Must be >1 Debye length
- Worst case Debye length: >30mm
- Planar design chosen over spherical due to volume constraints

Probe will be 40mm diameter

Baselined Langmuir Probe Deployer:

- Spring-loaded hinge mechanism on +Z face
- Boom connects to second hinge on -Z face
- Burnwire with Nylon fishing line to fix the assembly during launch
- Aluminium body acts as conductor
- Must attach to PCB and <u>not</u> metal structure

Baselined Langmuir Probe Deployer (cont.):

- Second hinge on -Z face orients probe
- PTFE/electrically insulating channel guides arm/supports 2 axes
- Burn wire circuit through PCB

Other Langmuir Probe Deployers:

Tape dispenser:

• High stowed volume (need to remove boards)

Scissor boom:

- High stowed volume
- Large area footprint (need to remove solar cells)

Image credit: NASA/DLR

10/30/2019

Image credit: DICE / USU

Baseline Design

- Must not damage solar cells, impact structure, etc
- Goal of minimizing changes to current design/layout
 - \circ Avoid new board layouts
 - \circ Avoid new structural design

Simulation and Test

- Random Vibration Test: start with NASA GEVS at component level, tested to JEMs for Structure + Boom
- Shock: HII-A User's Guide
- Quasi-Static Loading from JEMs
- Natural frequency analysis

HT	V	SpX D	ragon	Orbital Cygnus		
Freq. (Hz)	PSD (g ² /Hz)	Freq. (Hz)	PSD (g ² /Hz)	Freq. (Hz)	PSD (g ² /Hz)	
20	0.005	20	0.015	20	0.005	
50	0.02	25.6	0.027	70	0.04	
120	0.031	30	0.08	200	0.04	
230	0.031	80	0.08	2000	0.002	
1000	0.0045	2000	0.001			
2000	0.0013					
Overall (grms)	4.0	Overall (grms)	4.06	Overall (grms)	<mark>4.</mark> 4	
Duration (sec)	60	Duration (sec)	7.2	Duration (sec)	60	

Image credit: JAXA

Results

Mode No.	Frequency(Hz)
1	579
2	785
3	1090
4	1540
5	2120

First mode > 100 Hz

10/30/2019

Results (cont.)

- Resultant loading:
 - 25N at ~800Hz
- Tie down cable may take that load
- Must have strength > 25N for Safety Factor > 1
 - Nylon fishing line with tensile strength >100N is readily available
- From NASA GEVS profile (14.1Grms)

Normalized Reaction Force (N) vs. Frequency

Results (cont. 2)

	Requirement	Result
	Deploy probes >10cm	110mm
	Direct probes into velocity direction	Yes (second hinge mechanism)
	Conform to JEMs Payload Volume Requirements	Yes (1mm clearance)
	Conform to JEMs Random Vibrations Requirements	Yes (no part failure, boom does not damage other parts)
	Minimize hardware changes from BIRDS-IV	Requires drilling into +Z, -Z structure and Printed Circuit Boards (PCBs) No change to +/-X, +/-Y faces
10/30/2019	1	.5

Future Work:

Update configuration

Run shock test for launch profile

Order materials

Test burn wire, vibrations

Document tests, design

10/30/2019

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
90	89	92	104	102	108	111	107	114	109	98	92	114
(32)	(32)	(33)	(40)	(39)	(42)	(44)	(42)	(46)	(43)	(37)	(33)	(46)
61.1	62.0	63.6	66.4	69.3	73.0	76.0	76.9	76.8	73.7	67.3	61.1	69.0
(16.2)	(16.7)	(17.6)	(19.1)	(20.7)	(22.8)	(24.4)	(24.9)	(24.9)	(23.2)	(19.6)	(16.2)	(20.6)
52.3	53.4	54.7	56.7	59.3	62.6	65.2	65.9	65.5	62.6	57.2	52.1	59.0
(11.3)	(11.9)	(12.6)	(13.7)	(15.2)	(17.0)	(18.4)	(18.8)	(18.6)	(17.0)	(14.0)	(11.2)	(15.0)
43.6	44.8	45.8	47.0	49.2	52.1	54.5	54.8	54.3	51.5	47.1	43.1	49.0
(6.4)	(7.1)	(7.7)	(8.3)	(9.6)	(11.2)	(12.5)	(12.7)	(12.4)	(10.8)	(8.4)	(6.2)	(9.4)

Travel in California

10/30/2019

Thank you!

Any questions?

NASA GEVS:

- 14.1 Grms
- Not necessarily for ISS missions

Table 2.4-3 Generalized Random Vibration Test Levels Components (ELV) 22.7-kg (50-lb) or less

Frequency		ASD Level (g ² /Hz)				
(Hz)	Qualifica	tion	Acceptance			
20	0.026		0.013			
20-50	+6 dB/c	oct	+6 dB/oct			
50-800	0.16		0.08			
800-2000	-6 dB/o	-6 dB/oct -6 dB/				
2000	0.026		0.013			
Overall	14.1 G _{ri}	ms	10.0 Grms			
The acceleration spe weighing more than 2	ctral density level may b 22.7-kg (50 lb) according <u>Weight in kg</u>	e reduced for comp to: <u>Weight in lb</u>	onents			
The acceleration spe weighing more than 2 dB reduction ASD(50, 800 Hz)	ctral density level may b 22.7-kg (50 lb) according <u>Weight in kg</u> = 10 log(W/22.7) = 0.16(22 7/W)	e reduced for comp to: <u>Weight in Ib</u> 10 log(W/50) 0.16•(50/W)	onents			
The acceleration spe weighing more than 2 dB reduction ASD(50-800 Hz) ASD(50-800 Hz)	ctral density level may be 22.7-kg (50 lb) according = 10 log(W/22.7) = 0.16•(22.7/W) = 0.08•(22.7/W)	e reduced for comp to: <u>Weight in Ib</u> 10 log(W/50) 0.16•(50/W) 0.08•(50/W)	onents for protoflight for acceptance			

For components weighing over 182-kg (400-lb), the test specification will be maintained at the level for 182-kg (400 pounds).

10/30/2019

Mode 2: 785 Hz

Expected simple beam frequency: 560 Hz

26

Mode 3: 1090 Hz

Expected simple beam frequency: 870 Hz

